
Programming for the Real-World
(Embedded Systems)

SDP Workshop
Nashville, TN

Dec 13, 14 2001

Participants

• Robert Laddaga
(leader)

• Paul Robertson
• Scott Smolka
• Mitch Kokar
• David Stewart
• Brian Williams

• Insup Lee
• Kang Shin
• John Reekie
• Rajeev Alur
• With help from:

– Dave Sharp
– Calton Pu

Questions

• What can’t we do
• What are the promising technologies
• How can we enhance and extend current technologies
• How can we do technology transfer
• How can we spend $.5B/year
• Specific sellable ideas
• How to build for change
• How to exploit legacy SW
• What are our Basic Assumptions – challenges and threats

Outline

• Notable Progress
• What we can’t do
• What we can’t do (tech speak)
• Promising Technology

Notable Progress

• Use of tools
• Use of real-time operating systems
• Memory/Computation constrained
• Fault tolerant protocols
• Scheduling single processors
• Testing and validation

What we can’t do

• high level sensing
• infer decision crucial info from multiple disparate

sources
• Competent transfer of control (human or automated)

• automate our mechatronic miracles
(e.g.. UCAV, FCS, Space-Vehicles)

• make embedded systems invisible—ultra stable.
• certify embedded systems for less than ${gag}.
• trust our embedded software-

especially safety critical and novel systems.
• adapt to changing requirements/environment.

Unsolved Problems

• Uncertainty and model selection
• Hardware/Software co-design
• Testing & Validation
• Meeting non-functional constraints in integrated

systems.
• Use of models in integration
• Sensing Environment and Adaptive (resource

allocation, dynamic and adaptive)
• Can’t automate what we know how to do

More Unsolved Problems

• Distributed dynamic resource allocation.
• Fault management.
• Handle harsh environments cost effectively.
• Encoding and measuring functional

redundancy.

Promising Technologies

• Model based software development
• Non-functional reasoning of embedded SW

development
• Model Selection and Estimation
• Temporal Decision Theoretic Embedded

Languages
• Self adaptive software
• Synthesis
• Model-based Programming of Embedded

Software

Promising Technologies - Format

• What it is
• Research Agenda
• How it helps

Model-based software development

• Begin with informal requirements
• Capture requirements in a model serving as

a specification of the system
• Lots of different modeling paradigms

(ptolemy, simulink, charon)
• Model refinement and requirements tracing
• Code Generation
• Model based testing and validation

MBSD – Research Agenda
• Closing consistency gap between model and code –

preservation of structural features of design in code.
• Translating informal requirements into formal

requirements
• Tracing requirements into implementation
• How can we include disparately modeled submodels
• Enriched formalisms supporting non functional aspects
• More efficient testing
• Capture of distributed embedded systems
• Models including uncertainty
• Self adaptive models

MBSD – how it helps

• Certification for lower dollars
– Streamlining testing
– Early bug discovery
– Validation techniques

• Trust of embedded software
– Improved certification, reliability,

understandability

• Invisible – ultra stable

Model Selection & Estimation

• Techniques for simultaneous estimation of
model parameters and comparing alternate
models

MSE – Research Agenda

• Algorithms, optimization and approximation
techniques to allow tractable computation along
with realistic dependency assumptions

• Estimation over large distributed spaces
• Integration of multiple model representations –

models include constraints, logic, bayes nets,
HMM, ODE

• How to seamlessly fold methods for MSE into
embedded languages

MSE – how it helps

• Info fusion
– Integrates vastly distributed information

sources

• Detection of incipient states
– Helps to detect masked states

Temporal Decision theoretic
Embedded Languages

• Tracking large numbers of execution
trajectories

• Planning using expected values
• Dynamic technique involving On-line :

– Tracking
– Projection
– Execution
– replanning

TDTEL – Research Agenda

• How to decide which unlikely trajectories to track
• How to project forward consequences of traced

trajectories to ensure safety
• On-line model checking
• How to fold TDT Planning and execution into

embedded languages
• How do we do TDT Planning at reactive timescale
• How do we concurrently do planning and

execution on line.

TDTEL – How it helps

• Automation and adaptation
– Dynamic planning
– recovery

Non-functional reasoning of embedded
software development

• Bottom up approach to produce reliable
components and building blocks – including
functional and non-functional description and
assurance

• HW/SW Codesign – software redesign and reconfiguration
• Reliable device drivers – reliable interfaces to unreliable hardware
• Component specification – resource allocation under scarcity
• Aspect oriented software development – performance monitoring
• Non functional constraints – imprecise computation, uncertainty, fault

tolerance issues
• Low bit rate networking protocols
• Trade-off analysis
• Configurable hardware
• Application level

Self-adaptive Software

• What it is:
– Monitor detect and repair in response to faults and

changes by modifying/resynthesizing program.
– Feedback/Control-system-like

• Examples:
– Networks of cooperating air vehicles.
– Reconfiguration of hardware within vehicles and submarines.
– Adaptation of control laws for flight surfaces.
– Adaptation of numerical codes for optimization or simulation.
– Adaptation of assumptions to track changing conditions during

high level sensing (vision, speech).

SAS – Research Agenda

• Investigate ways of ensuring stability.
• Investigate ways of ensuring that the high level goals of

the system are met – the set point.
• Investigate how to represent models and monitor models

for different classes of systems.
• Investigate ways of performing program synthesis.
• Investigate how to achieve acceptable performance (good

enough soon enough, QoS metrics)
• Architectures and design of Self-adaptive software.
• Design languages that incorporate ideas of sensing and

adaptation.

Self-Adaptive Software

• What problems it addresses:
– High level sensing
– Adaptation
– Automation

• Why it solves the problems:
– Divides a complex space into smaller tractale

ones.
– Control systems are inherent engineering

artifacts. Embedded systems control physical
systems and are inherently control system-like.

Synthesis

• What it is:
– Automatic code generation from specifications,

models, design rules.

Synthesis - Research Agenda

• Dealing with uncertainty and hidden states.
• Automatic generation of monitor code from models.
• Model Fitting.
• How to bring focused synthesis online.
• Integration of offline compilation with online reasoning.
• Dealing with optimality and feasibility.
• Dealing with functional redundancies and contingencies.
• Dealing with dynamically changing components.
• Resource allocation/constraints.

Synthesis

• What problems it addresses:
– Supports self-adaptive software model-based

programming
– Adaptation
– Assured low-level components.

• Why it solves problems:
– Allows software to be generated dynamically (at

runtime).
– Provides for automatic verification.
– Improves confidence vs. Human coding.

Model-based Programming of Embedded
Software

• What it is:
Embedded languages that:
– Encode strategic guidance and incorporate

models of the environment
– Use these descriptions to automatically

interpret and coordinate environmental
interactions.

MPES: Research Agenda

• Seamless extension of embedded languages to:
– Incorporate rich models of the embedded environment.
– Shift the role of a program from an imperative to an

advisory role
• Fast on-line reasoning for managing interactions,

including: State estimation, environment reconfiguration,
planning, scheduling, discrete event control and continuous
control.

• Automated partitioning of coordination between
run-time and compile-time tasks.

• Frameworks for incorporating and reasoning from
a rich set of modeling formalisms.

MPES: How it helps
• Simplifies programming for autonomy by

– Offering a simpler model of interaction between the programmer
and the environment

– By delegating reasoning about interactions to the language’s
interpreter/compiler.

• Improves robustness for autonomy by
– Systematically consider a wider set of possible interactions and

responses.
– Responding to novel events on-line.
– Employing provably correct algorithms.

• Supports adjustable levels of autonomy by
– Allowing the programmer to delegate the desired level of control

authority within the control program.

